Optimal bounds for the colored Tverberg problem

نویسندگان

  • Pavle V. M. Blagojević
  • Günter M. Ziegler
چکیده

We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically optimal in the general case. The proof is based on relative equivariant obstruction theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Colored Birch and Tverberg Partitions

In 2009, Blagojević, Matschke & Ziegler established the first tight colored Tverberg theorem. We develop a colored version of our previous results (2008): Evenness and non-trivial lower bounds for the number of colored Tverberg partitions. Both properties follow from similar results on the number of colored Birch partitions.

متن کامل

New Results in Tropical Discrete Geometry

Following the recent work of Develin and Sturmfels and others (see, e.g., [10, 16, 2, 11]), we investigate discrete geometric questions over the tropical semiring (R, min, +). Specifically, we obtain the following tropical analogues of classical theorems in convex geometry: a separation theorem for a pair of disjoint tropical polytopes by tropical halfspaces and tropical versions of Radon’s lem...

متن کامل

Determining the Optimal Value Bounds of the Objective Function in Interval Quadratic Programming Problem with Unrestricted Variables in Sign

In the most real-world applications, the parameters of the problem are not well understood. This is caused the problem data to be uncertain and indicated with intervals. Interval mathematical models include interval linear programming and interval nonlinear programming problems.A model of interval nonlinear programming problems for decision making based on uncertainty is interval quadratic prog...

متن کامل

A tight colored Tverberg theorem for maps to manifolds

We prove that any continuous map of an N -dimensional simplex ∆N with colored vertices to a d-dimensional manifold M must map r points from disjoint rainbow faces of ∆N to the same point in M : For this we have to assume that N ≥ (r − 1)(d + 1), no r vertices of ∆N get the same color, and our proof needs that r is a prime. A face of ∆N is a rainbow face if all vertices have different colors. Th...

متن کامل

Tverberg's theorem with constraints

We extend the topological Tverberg theorem in the following way: Pairs of points are forced to end up in different partition blocks. This leads to the concept of constraint graphs. In Tverberg’s theorem with constraints, we come up with a list of constraints graphs for the topological Tverberg theorem. The proof is based on connectivity results of chessboard-type complexes. Tverberg’s theorem w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009